You won't want to miss out on the world-class speakers at TNW Conference this year 🎟 Book your 2 for 1 tickets now! This offer ends on April 22 →

All Articles for

Absolute Zero

Absolute zero is the lower limit of the thermodynamic temperature scale, a state at which the enthalpy and entropy of a cooled ideal gas reaches its minimum value, taken as 0. The theoretical temperature is determined by extrapolating the ideal gas law; by international agreement, absolute zero is taken as −273.15° on the Celsius scale (International System of Units), which equates to −459.67° on the Fahrenheit scale (United States customary units). The corresponding Kelvin and Rankine temperature scales set their zero points at absolute zero by definition. It is commonly thought of as the lowest temperature possible, but it is not the lowest enthalpy state possible, because all real substances begin to depart from the ideal gas when cooled as they approach the change of state to liquid, and then to solid; and the sum of the enthalpy of vaporization (gas to liquid) and enthalpy of fusion (liquid to solid) exceeds the ideal gas's change in enthalpy to absolute zero. In the quantum-mechanical description, matter (solid) at absolute zero is in its ground state, the point of lowest internal energy. The laws of thermodynamics dictate that absolute zero cannot be reached using only thermodynamic means, as the temperature of the substance being cooled approaches the temperature of the cooling agent asymptotically. A system at absolute zero still possesses quantum mechanical zero-point energy, the energy of its ground state. The kinetic energy of the ground state cannot be removed. Scientists have achieved temperatures extremely close to absolute zero, where matter exhibits quantum effects such as superconductivity and superfluidity.